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Abstract

Scientists have long tried to predict evolutionary outcomes
in order to design vaccines for next year’s diseases, stabilize
endangered ecosystems, or make better choices in designing
evolutionary algorithms. To predict, however, we must first
be able to retroactively identify the key steps that determined
the evolved state. Researchers have long examined the role
of historical contingency in evolution; when do small, seem-
ingly insignificant mutations substantially shift the probabili-
ties of what traits or behaviors ultimately evolve? Practition-
ers of experimental evolution have recently begun to inves-
tigate this question using a new technique: analytic replay
experiments. We can found many populations with a given
genotype in order to measure the probability of a particular
trait evolving from that starting point; we call this the “po-
tentiation” of that genotype. Moving along a lineage, we
can identify which mutations altered potentiation. Here we
used digital organisms to conduct a high-resolution analysis
of how individual mutations affected the potentiation of asso-
ciative learning. We find that the probability of evolving as-
sociative learning can increase suddenly — even with a single
mutation that appeared innocuous when it occurred. While
there was no obvious signal to identify potentiating muta-
tions as they arose, we were able to retrospectively identify
mechanisms by which these mutations influenced subsequent
evolution. Many of the most interesting and complex evolu-
tionary adaptations that occur in nature are exceptionally rare.
Here, we extend techniques for understanding these rare evo-
lutionary events and the patterns and processes that produce
them.

Introduction

How likely is the evolution of a particular trait? Researchers
have long been interested in predicting evolutionary out-
comes, but the inherent stochasticity in the process makes
this goal exceptionally challenging. In order to make more
accurate predictions, we would need to better understand
how and why the underlying probabilities of potential out-
comes change over time. Looking purely retrospectively at
evolution in nature, this type of analysis is not possible (at
least not without a time machine). Leveraging the flexibility
and controls available in experimental evolution, however,
allows us to empirically test questions that were previously
only hypothetical (Kawecki et al., [2012). Here, we focus
on Stephen Jay Gould’s idea of “replaying the tape of life”

(Gould, [1990). The idea is simple: If we were to start life
over again from the same initial conditions, would evolution
follow the same pathway? Alas, Gould remarked that this
experiment is unfortunately impossible.

While it may be impossible to replay the entire tape of
life, practitioners of experimental evolution have conducted
this experiment on a smaller scale. [Travisano et al.| (1995),
Wagenaar and Adami| (2004), and Blount et al.| (2008)) intro-
duced and refined methods of investigating the role of his-
torical contingency in evolving populations: parallel and an-
alytic replay experiments. By evolving multiple populations
from the same starting organisms, researchers can identify
the range and distribution of outcomes. These populations
can be evolved simultaneously (parallel replays), however
many microbial and digital populations allow us to preserve
a “fossil record”, opening up another possibility. Analytic
replay experiments systematically revive historical popula-
tions to re-evolve them, allowing researchers to identify al-
ternative possibilities after the fact (Blount et al., |2018]).
When one strain of E. coli in Dr. Richard Lenski’s long-
term evolution experiment (Lenski et al., [1991) unexpect-
edly evolved the ability to digest citrate, Blount et al.| (2008))
used analytic replay techniques on previously frozen sam-
ples (spaced across the lineage) to identify the potentiation
of this unlikely evolutionary outcome. In their replay ex-
periments, restarts from earlier time points never re-evolved
citrate utilization, but successful re-evolution of the behavior
in restarts from later time points indicated that the popula-
tion had become potentiated. In later work, Blount et al.
(2012)) used genetic sequencing and manipulation to iden-
tify the specific potentiating mutations associated with this
increased probability.

Analytic replay experiments provide a powerful new tool
for understanding the role of history in evolution. In addition
to studying the evolution of E. coli citrate metabolization,
analytic replay experiments have also been used to study the
evolution of novel receptor usage of Phage A into E. coli
(Meyer et al.||2012), and colistin resistance in Pseudomonas
aeruginosa (Jochumsen et al.l [2016)). For a review of these
experiments and other uses of analytic replay experiments,
see (Blount et al., [2018]).
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In this work we use digital evolution, specifically the evo-
lution of self-replicating computer programs in the Avida
Digital Evolution Platform (Ofria and Wilke, 2004), which
has previously been used to conduct replay experiments.
Yedid et al.| (2008) employed this technique to investigate
the re-evolution of traits following an extinction episode,
while [Covert III et al| (2013) used analytic replay experi-
ments to study the importance of individual deleterious mu-
tations in the evolution of complex traits.

We selected associative learning as a complex behavior
to study potentiation. Associative learning is a non-trivial
capability exhibited by most complex organisms. In digital
evolution systems like Avida, it serves as a rare yet evolv-
able trait (Pontes et al. [2020). For an Avida organism to
exhibit associative learning, it must be capable of sensing
its environment, taking action, and storing information in
memory. The evolution of associative learning has been
studied via experimental evolution in both digital (Pontes
et al., [2020; [McGregor et al) |2012) and natural systems
(Dunlap and Stephens| |2014; Mery and Kaweckil, [2002), yet
many questions remain about how it evolves. While more
complex forms of learning are found in nature, associative
learning remains an important building block for most others
and insights about how it arises may be informative for un-
derstanding the broader evolution of intelligence, especially
within digital contexts.

In this work, we begin to analyze how the likelihood of
evolving a complex trait changes along a successful lineage.
Using analytic replay experiments, we identified individual
mutations that cause drastic increases in the potentiation of
associative learning. We then analyzed those mutations and
their mutational neighborhoods to begin characterizing how
a mutation is potentiating. While these replay experiments
are informative and useful for exploring counterfactual evo-
lutionary possibilities, they are also computationally inten-
sive. As such, we start by focusing on a set of case-study
lineages to develop an initial framework for understanding
how potentiation can occur.

Analyzing four successful lineages, we find that potentia-
tion can increase suddenly, even due to a single mutation.
Since these lineages were selected because they success-
fully evolved associative learning, potentiation generally in-
creases in each, though some decreases do occur. Potentiat-
ing mutations vary in initial effect, making them challeng-
ing to detect. Retrospective analysis allows us to identify
them, however, and begin hypothesizing about the dynamics
that allow these mutations to potentiate associative learning.
This work demonstrates using analytic replay experiments
for quantifying potentiation along a lineage and establishes
baselines and techniques for future studies.

Methods

Here we describe the digital evolution system and experi-
ment setup used to conduct this work.

The Avida Digital Evolution Platform

This work uses an early build of version 5.0 of the
Avida Digital Evolution Platform (Ofria and Wilke}
2004), currently under development as part of the
Modular Agent Based Evolver 2 (MABE2) framework
(https://github.com/mercere99/MABE?2). In Avida, popula-
tions of self-replicating computer programs perform tasks to
compete for CPU cycles, creating an evolution testbed that
can support a wide array of experimental controls. Avida
has been used for numerous studies on the evolution of com-
plexity (Lenski et al.,2003;|Zaman et al., 2014)), associative
learning (Pontes et al., [2020; |Grabowski et al., 2010), and
historical contingency via replay experiments (Yedid et al.,
2008; |Covert 111 et al.l |2013). Fundamentally, Avida is de-
signed to have tools necessary to conduct work at the scale
required for replay experiments. While Avida is more com-
plex, and thus slower, than other digital evolution models,
we argue that this is appropriate for initial measurements
of potentiation dynamics. Future work can isolate which
of these dynamics are explained with simpler systems and
which require more complicated interactions.

Avida genomes consist of assembly-like instructions that
transfer data between registers, make basic comparisons,
perform mathematical operations, efc. We use an ex-
tended instruction set that includes extra flow control and
environment-specific instructions (Ferguson, |[2023)).

We used Avida populations on a 60x60 toroidal grid, re-
sulting in a population cap of 3,600 organisms. Offspring are
placed in a grid cell next to their parent, overwriting any ex-
isting organism in that cell; the parent organism is also reset.
During reproduction, point mutations occur in offspring at a
rate of 0.0075 per instruction, while single-instruction inser-
tion and deletion mutations occur at a rate of 0.05 per re-
production. Organisms reproduce by executing the Repro
instruction. To prevent organisms from immediately repli-
cating, organisms must execute 1,500 instructions before the
Repro instruction can be activated.

Associative learning To test the evolution of associative
learning, we created a simplified version of the Avida path
following environment (Pontes et al.| [2020). Instead of nav-
igating 2D space, an organism exists in one of four states:
forward, left, right, or the error state, backward. Organisms
are given a Sense instruction, which will give them the nu-
trient cue of their current state. Using this nutrient cue, or-
ganisms need to execute the appropriate instruction (one per
state) to progress along the path. The forward and back-
ward states have fixed cues (0 and -1, respectively), while,
at birth, each organism is assigned random cue values for left
and right in the range of [1, 10°]. Organisms can genetically
encode forward and backward, but must learn left or right
in their lifetime to perfectly solve the task. Each path be-
gins with one of four preset starting state sequences, chosen
randomly for each organism at birth, followed by additional

€20z AInr Gz uo 1senb Aq ypd ¥8900 & 18S1/920611.2/| L/SE/Ies!pd-sBuipeadoid;esynpa-jiw-1oalip//:dny woly pspeojumoq


https://github.com/mercere99/MABE2

random states. The four preset paths are the “one-fixed turn”
paths from (Pontes et al.,|2020), where organisms are guar-
anteed to encounter a left state before a right.

If the organism is not in an error state and executes the ap-
propriate instruction, they are rewarded and move to the next
state. If an organism executes the wrong instruction (e.g.,
the Left instruction in the right state), it is penalized and
placed in the error state. While in the error state, the organ-
ism must execute the Backward instruction to return to the
previous state and be allowed to try again; it will be penal-
ized for any other action. A cooldown is applied, however,
such that executing the Backward instruction causes the
organism to wait for the equivalent of 10 additional instruc-
tion executions. Organisms are scored based on the number
of valid states they successfully traversed minus the num-
ber of incorrect moves made, with a maximum score of 300.
Fitness is calculated as 1.25%°°"¢, so each additional correct
movement grants a 25% boost in fitness regardless of the
total number of correct movements.

In this environment, optimal behavior requires associative
learning in the form of imprinting. Since the paths are guar-
anteed to have a left state before a right state, the optimal
behavior is to find and store the first positive cue value as
the left cue. Combined with genetically-encoded forward
and backward logic, storing and using the /eft cue is enough
for organisms to identify the right cue through a process of
elimination. Other possible behaviors involve error correc-
tion (assuming all turns are one direction, then correcting
when wrong), bet-hedged learning (assuming more about
the paths, e.g., that there are no instances of two lefts in a
row), and various mixed strategies.

To categorize the behavior of a genotype, we evaluate it
in 100 trials to ensure we observe how it performs in all
four environments with different random cues. We then clas-
sify each of the 100 trials. Trials are classified as learning
if the organism correctly handles greater than 90% of the
states they were in, error correction if they always success-
fully navigated one turn state but not the other, and “low
activity” if they failed to successfully navigate at least 25
states. To be categorized as learning or error correction, all
100 trials of that genotype must be of that class. If one or
more trials were low activity, the genotype was categorized
as “bet-hedged learning” or “bet-hedged error correction”.
If a genotype displayed at least one learning trial and at least
one error correction trial, they were classified as “mixed
bet hedging”. Finally, all remaining genotypes were cate-
gorized as “low activity”. This categorization system was
used across all three phases of this work.

Experiment framework

To identify mutations that substantially increased the like-
lihood that learning evolved, we split the work into three
phases (see Figure[I]for an overview). First, we seeded 200
initial parallel replicates in the associative learning environ-
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Figure 1: Tllustration of the experimental design and hypo-
thetical results. The top panes show the 200 initial parallel
replicates seeded with the ancestral genotype and evolved
for 250,000 updates. We extracted the lineage of the most
abundant genotype in the evolved population (the dominant
lineage), shown in red. Next, we conducted exploratory re-
plays (middle panes) by launching replay replicates at regu-
lar intervals along focal lineages. These exploratory replays
give a coarse-grained view of how potentiation changed over
a lineage. We identified the window with the largest po-
tentiation gain, shown as the shaded region. Finally, we
ran targeted replay replicates for every step in this potentia-
tion window. These fine-grained replay replicates show mu-
tations that resulted in large potentiation increases (shown
here with a red dot).

ment with a default ancestor only capable of reproduction.
Each replicate was given 250,000 updates, where one update
is the time it takes for all organisms to execute 30 instruc-
tions, on average. We identified the most abundant genotype
in each final population to represent the replicate and classi-



fied its behavior. We then extracted the “dominant lineage”,
stretching from the ancestor to the representative genotype.
Each step in the lineage corresponds to a change in genotype
between parent and offspring, with clonal offspring occupy-
ing the same step as their parent. While a step is often a
single mutation, it is possible that one step is composed of
multiple co-occurring mutations.

To begin analyzing changes in potentiation, we ran ex-
ploratory replays replicates on four lineages capable of
learning. For each, we seeded independent replicates for
every 50%" step in the lineage, up to step 1,000. All replay
replicates evolved in the same associative learning environ-
ment, and replays were given the same number of updates
as had occurred after that genotype first appeared (e.g., re-
plays for a genotype that appeared at update 150,000 would
be evolved for the remaining 100,000 updates). Potentiation
was measured as the portion of replay replicates that evolved
learning. Because replays were seeded with a single organ-
ism, some replay populations went extinct before ever repro-
ducing and thus were not factored in (the minimum number
of finished replay replicates from a given lineage step was
38, while three case study lineages had a minimum of 48).

While the exploratory replays provide an overview of how
potentiation changed, we dug deeper by running targeted
replays to further explore windows of increasing potentia-
tion. Specifically, we found the 50- or 100-step “potentia-
tion window” that sees the largest increase in potentiation
in the exploratory results, and seeded additional replays for
every step in that range. These targeted replays were con-
ducted identically to the exploratory replays, only they did
not skip steps. Though computationally expensive, these re-
plays illuminated the impact every genotypic change had on
potentiation. Running 50 replay replicates per step still re-
sults in considerable noise, but we were able to identify mu-
tations that clearly and substantially increased potentiation
using these targeted replays.

We hand-analyzed algorithms in all potentiating muta-
tions, here defined as single lineage steps that result in a
potentiation increase of 25 percentage points or more. Fur-
ther, we assessed genotype fitness in context of their lineage
to identify if potentiation mutations were beneficial, delete-
rious, or neutral. Finally, we characterized the local fitness
landscape of each genotype (one and two mutations out),
measuring the presence and fitness of nearby genotypes ca-
pable of learning.

Data and software availability

Both the data and the software used to conduct this work
are available in the supplemental material (Ferguson, 2023)).
Analyses were conducted in the R statistical computing lan-
guage (R Core Team, [2021) using the dplyr package to sum-
marize data (Wickham et al., [2022). Data was visualized
using the ggplot2 and cowplot packages (Wickham et al.|
20205 Wilkel 2020).

Results

Here we discuss the generation and analysis of the initial
replicate runs, followed by the more detailed results from
each of the four case study lineages.
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Figure 2: Behavior classification of the final dominant geno-
types from the 200 initial parallel replicates.

Evolution of learning in the initial replicates

In the first phase of this study, we evolved 200 independent
replicates for 250,000 updates (about 3600 generations) in
the associative learning domain, each starting with a default
ancestor. The distribution of evolved behaviors is shown in
Figure 2] Only 16 of 200 replicates exhibited associative
learning. An additional 15 replicates evolved forms of bet-
hedged learning, with two of those replicates gaining and
then losing associative learning along their lineage. The ma-
jority of replicates relied on some form of error correction,
either as a sole strategy (140), a bet-hedged variant (2), or as
a fallback due to limited learning (3). Finally, 24 replicates
failed to navigate enough states to categorize them, leading
us to label them as “low activity”.

We analyzed all 16 replicates that evolved and maintained
learning, identifying the length of their lineages from on-
set of evolution until learning stabilized, no longer showing
further improvement. Given the substantial computational
power required for each time point studied, we performed
replay experiments only on the shortest three such lineages
(lineages A-C), plus the shortest lineage that exhibited error
correction at some point in its evolutionary history (lineage
D). Selecting these particular replicates to replay has the po-
tential to bias the results, as discussed below.
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Figure 3: Potentiation of associative learning for all case studies, shown as the percentage of replicates that evolve associative
learning when replayed from a given genotype. For each case study, the left plot shows the results of the exploratory replays.
We identified a window of potentiation gain in each lineage, indicated by the shaded region. Within that window, we conducted
targeted replays for every step along the lineage, shown on the right. The color of the points corresponds to the behavior
exhibited at that step of the lineage. A dotted line in the targeted replays indicates the step that conferred the most potentiation.

Case studies of individual lineages

Below we present the results of the replay experiments per-
formed on the four focal lineages and provide a step-by-step
analysis of how key mutations altered both immediate fit-
ness and evolutionary potential (potentiation). Where pos-

sible, we explained how these mutations altered the under-
lying algorithms. For each lineage, potentiation across both
exploratory and targeted replays can be found in Figure 3]
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Lineage A Our first case study is one of the shortest lin-
eages and it contains a quick jump to learning (at step 537)
from low activity, with only a brief time spent in bet-hedged
learning. Exploratory replays for this lineage revealed a
stark jump in potentiation between 400 and 500 steps from
the ancestor, which we call the potentiation window. From
step 400 to step 450, potentiation increased from 20% of
replicates to 44%, and increased again to 84% of replicates
by step 500. Before this window, potentiation fluctuated
around the original 8% found starting from the default an-
cestor. After the selected window, potentiation increased
once more and then fluctuated between 94% and 100%.

With this in mind, we seeded 50 replays for each geno-
type in the potentiation window. Even with the noise due to
a small sample size, we identified two mutations that con-
ferred sizable increases in potentiation: steps 432 and 484.
The mutation at step 432 brought potentiation above 50% for
the first observed time in the lineage. Surprisingly, potenti-
ation then decreased (on average) back to a local minimum
of 20% of replicates at step 480. Finally, the mutation at
step 484 substantially increased potentiation to 92%, where
it stayed for all subsequent replays.

Even though the largest jump in potentiation occurred at
step 484, learning did not appear in the lineage until step
537. That said, only steps 516 and 525 caused any change in
behavior; all other interim mutations occurred in unexecuted
regions of the genome. The potentiating mutation at step 484
made a key instruction in the main loop of the genome re-
dundant. It had no immediate effect on fitness, but later (in
intermediate step 516) allowed the redundant instruction to
be replaced by a right turn that granted a small fitness in-
crease as organisms could now navigate until they reached
the second left turn. Step 525 further improved navigation,
but used a comparison that made an unfounded assumption
on whether the left or right random cue is larger. When the
assumption was correct organisms were capable of learning
the cues, however the assumption is only correct 50% of the
time, so this genotype is categorized as bet-hedged learn-
ing. Finally, step 537 swapped that comparison with one
that makes no assumptions about cue values, enabling the
genotype to learn in all environments.

Looking at the local mutational neighborhood, the poten-
tiating mutation at step 484 increased the number of two-
step mutations that conferred learning from 2 to 9 (of ap-
proximately 56 million). Additionally, the fitness of the
learning mutations in the local neighborhood increased by
three or four orders of magnitude.

What about the earlier potentiation that was gained and
then lost? The mutation that substantially increased potenti-
ation at step 432 introduced a comparison that had no imme-
diate fitness effect. This comparison remained unimportant
until step 525 when it became integral in introducing bet-
hedged learning. Neither step 432 nor its predecessor had
access to learning within a two-step mutational range. Thus,

it is likely that the potentiation comes from that comparison
given that we observed it being utilized for learning later on.

Why then, did potentiation decrease between steps 432
and 4847 At step 432 (and indeed before it), the algorithm
had a section where if register B was non-zero, then B stored
the cue associated with a left turn. While this information
was likely to make the evolution of learning easier, it was
unused at that time. As such, the mutations between steps
432 and 484 dismantled that machinery, requiring a replace-
ment to be built before learning could evolve.

Lineage B Similar to Lineage A, this lineage transitioned
from low activity to learning through a brief period of bet-
hedged learning. Exploratory replays on this lineage reveal
that learning was potentiated almost immediately; by step
150 potentiation had climbed above 95%, where it stayed
for the rest of the lineage. As such, the potentiation window
included steps 50 through 150.

Unlike Lineage A, the targeted replays reveal a general
trend of increasing potentiation, with step 104 as a notable
outlier. Mutations from steps 50 through 103 slowly in-
creased potentiation from 4% to 44%, but the mutation at
step 104 jumped to 80%. From there, another slow increase
continued to raise potentiation to a peak of 98% at step 150.

Learning did not appear until step 195, over 90 steps be-
yond the largest potentiating mutation. Given that 34 inter-
mediate mutations altered the encoded algorithm, the mech-
anistic pathway to achieve learning is more complicated than
can be broken down in this work. However, the potentiat-
ing mutation at step 104 modified the execution flow of the
genome, which appears to have been essential for the later
evolution of learning.

While two mutations occurred at step 104, only one
caused a functional change: an instruction to swap data be-
tween registers was mutated to a left turn. Prior to this mu-
tation, the genome encoded a left turn later on, after which
the execution became trapped in an endless loop. The poten-
tiating mutation was immediately beneficial; it allowed or-
ganisms to take the left turn earlier, which, in turn, allowed
them to avoid the loop. As a side effect, a large portion of the
genome that was previously executed was now skipped, and
these instructions remained skipped when learning evolved
91 steps later. Looking at the local fitness landscape, learn-
ing was neither present in the potentiating step’s landscape
nor in the step before. We hypothesize that the potentiation
came from the change in execution flow, and that skipping
over those instructions avoided a pitfall and freed up execu-
tion time that may have been useful in evolving learning.

Lineage C Lineage C has the biggest single-mutation po-
tentiation increase (64 percentage points), and that mutation
was deleterious when it occurred at step 279 along the lin-
eage. Learning later appeared at step 305.

The potentiating step mutated a no-operation instruction
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into a conditional flow control instruction. At step 278 the
genotype was capable of bet-hedged learning, but the mu-
tation at 279 knocked out all instances of learning, reclassi-
fying the behavior as “low activity.” The next step restored
some fitness, and then step 285 interacted with the mutation
at 279 to not only restore fitness, but to dramatically improve
it. Ultimately, the potentiating mutation at step 279 allowed
the algorithm to more precisely discriminate between the
left and right cues. Prior to the mutation, a less-than com-
parison was used, which only functioned correctly in 50%
of instances, specifically those where the left cue was less
than the right cue. The potentiating mutation switched to an
equality comparison, which alleviated the assumption and
initiated the transition from bet-hedging to learning.

Interestingly, the potentiating mutation lowered both the
number and average fitness of learning mutations available
in the local fitness landscape,

Lineage D Of the four replicates we analyzed, Lineage D
is the only one that evolved error correction before learn-
ing. Like the earlier lineages, the exploratory replays show
that almost all potentiation comes from a single window. In
this case, potentiation grew from 34% of replicates to 96%
between steps 500 and 550. Targeted replays are especially
noisy for this lineage, but generally show an increase in po-
tentiation, especially in the latter half of the window. The
largest jump in potentiation occurred at step 548, near the
end of the window. Several prior mutations also showed no-
table potentiation increases, but in each case later mutations
appeared to counteract them. Specifically, steps 542 and 543
appear to have higher potentiation than the points around
them, but potentiation dipped back below 50% before the
largest jump at 548.

Out of all four lineages, D has the fewest steps between
the largest potentiating step (548) and the first appearance
of learning (556). At the time, the potentiating mutations
at 548 caused no discernible change in fitness even though
they increased potentiation by 50 percentage points. Two
mutations occurred at step 548: a point mutation swapped a
flow control instruction for a math instruction and an inser-
tion mutation added a comparative conditional instruction
into the main execution loop. At step 548 the genotype en-
coded a naive error correction algorithm: after setup, organ-
isms could always handle right states, but always failed left
states, recovered, and then continued. A mutation at step 556
swapped a sensing instruction with a math instruction, and
this combined with the prior comparison instruction from
step 548 to allow the organism to move left when needed and
shifted the behavior to learning. The local fitness landscape
supports the idea that the comparison instruction was use-
ful to the evolution of learning, as the potentiating mutation
increased the number of learning genotypes in the two-step
mutational neighborhood from under 800 to over 100,000.

Looking back at the apparent false start at steps 542 and

543, it is not clear what algorithmic changes these mutations
conferred. These steps did, however, alter the set of learn-
ing behaviors that fell within the local mutational neighbor-
hood. At step 541, there were only 324 two-step mutations
that conferred learning, and only three of those resulted in
a substantial fitness increase (a merit > 10'°). After steps
542 and 543, that number rose such that over 900 two-step
mutations could confer learning, with over 500 resulting in a
substantial fitness increase (including over 200 that reached
a merit > 10%°). We may be unsure of the exact effects of
these mutations on the mechanics of the algorithm, but the
changes in the local fitness landscape are profound.

Discussion and Conclusion
Potentiation can rise suddenly

We have documented several cases where single mutations
dramatically increased the probability of associative learn-
ing later evolving. Of the four lineages analyzed, each had a
single step in the lineage that resulted in a substantial in-
crease in potentiation (ranging from 36 to 64 percentage
points). Indeed, two of the lineages had an additional poten-
tiating mutation that resulted in an increase of over 30 per-
centage points. Looking only at exploratory replays, each
lineage has a 50-step window that resulted in a potentiation
increase of at least 40 percentage points.

While four lineages are insufficient to make any strong
claims, these results demonstrate that it is possible for sin-
gle mutations to drastically increase potentiation, and pro-
vide compelling evidence that they may, in fact, be common.
In Lineages B and D, however, we do also observe regions
with smaller, incremental increases in potentiation. Further
studies are clearly necessary to more fully understand the
general patterns and processes by which potentiation rises
across different representations and environments.

Potentiation can decrease along a successful lineage

In two of the lineages we analyzed (A and D), we see evi-
dence of potentiation decreasing over spans of the lineage.
With only 50 replay populations per lineage step, our results
are noisy and it is difficult to isolate what is occurring during
these periods of potentiation decline. While we were unable
to identify any “anti-potentiating” mutations with effects as
large as the positive potentiation mutations, it is possible for
a single step in a lineage to greatly decrease potentiation.
Since we limited our analyses to runs where associative
learning arose in the original replicate, we did not expect a
preponderance of anti-potentiating mutations, but were in-
trigued to see evidence of them, even if at low effect. These
same analytic replay experiments could be applied to lin-
eages that failed to evolve the target behavior, to see if poten-
tiation of that behavior experiences sudden drops. Similarly,
our replays targeted windows with substantial increases in
potentiation; other windows would be more likely to include
decreases. Finally, failed replays from starting points with
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otherwise high potentiation must have failed for a reason;
they too could be used as a likely source (albeit more artifi-
cial) of anti-potentiating mutations.

Potentiating mutations can appear innocuous when
they first occur

We analyzed the mutational step in each of the four lineages
that conferred the greatest increase in potentiation. Of those
four mutational events, two were neutral, one was delete-
rious, and one was beneficial. Even among these few repli-
cates, there is no obvious pattern in the properties of potenti-
ating mutations. Of the two neutral mutations, one made an
instruction redundant while the other added a conditional in-
struction that had no effect when it was initially introduced.
The deleterious and beneficial mutations both caused the ex-
ecution flow to loop back earlier than it did before. Addi-
tionally, the number of mutations between the potentiating
mutation and the appearance of learning varied wildly be-
tween lineages, ranging from 8 steps up to 91. The potenti-
ating mutations in these four lineages are unique, and at the
current time there is no pattern emerging among them. So,
how are these mutations any different from other mutations?
Untangling this mystery could be critical for predicting evo-
lutionary outcomes or accelerating adaptive evolution.

We can identify how a mutation is potentiating

There are many mechanisms by which a mutation could fa-
cilitate the evolution of associative learning. For example,
the mutation could provide a building block that is helpful
to perform the task. But for a mutation to be potentiating it
must notably increase the probability of associative learning
appearing in the future. Any change, no matter how helpful,
that was already likely to occur would not be considered po-
tentiating. Indeed, it is the earlier mutations that made that
change so likely that would be potentiating. Of course, those
mutations are also more challenging to identify.

We have three different hypotheses for how a mutation
could be potentiating: (1) It is the initial move into a ge-
netic neighborhood with associative learning, (2) It is a shift
into a genetic neighborhood with a more valuable version
of learning, or (3) It is a “gateway” mutation that unlocks a
beneficial pathway to learning, even though learning is not
in the immediate genetic neighborhood.

Across the potentiating mutations we analyzed, we have
found evidence for each of these hypotheses. The largest po-
tentiating mutation in Lineage D supports Hypothesis 1, as
it is the first time in the lineage that learning is only one mu-
tation away. The main potentiating mutation in Lineage A
and the earlier potentiation mutations in Lineage D support
Hypothesis 2 as both cause drastic increases in the fitness
benefit of learning mutations in the two-step neighborhood.
Finally, Lineages B, C and the early potentiating mutation
from Lineage A all provide support for Hypothesis 3. The
mutations from Lineages A and B both have zero learning

mutations in their two-step neighborhoods. Interestingly,
Lineage C sees a decrease in the number and fitness of learn-
ing mutations in the local neighborhood.

Hypothesis 3 has many possible mechanisms by which it
may work. For example, new traits may produce a single,
clear, beneficial pathway of improvements to follow. Al-
ternatively, a new building block may open a larger region
with many different ways of evolving associative learning.
Finally, the mutation may actually damage existing func-
tionality or remove existing interactions that were imped-
ing further evolution. While all three hypotheses have some
support, future work can begin to uncover if a certain hy-
pothesis is seen more often, what conditions might result in
each scenario, or if additional analyses are needed to truly
characterize these potentiating mutations.

Outlook

This work is only an early step, focused on developing tech-
niques and expectations for performing fine-grained anal-
yses of replay experiments. Next, we must expand be-
yond four lineages, to collect broader, more systematic re-
play data, automating as much of the process as possible.
We conducted this study on associative learning in Avida,
but the underlying techniques must be examined broadly
in other environments and substrates to ensure that our re-
sults are not unique to Avida or the evolution of associative
learning. Within the current study system, there are many
questions that remain unanswered: We focused on large in-
creases in potentiation, but are there more obvious signals
associated with decreases? How much of the noise that we
see in our data is due to limiting ourselves to 50 replicates,
and how much of it is do to actual shifts in potentiation with
each mutation? What does potentiation look like in repli-
cates that fail to evolve learning? Finally, it would be valu-
able to compare the specific evolutionary pathways the dif-
ferent replays take. Do they follow the same trend or do they
differ? This would allow us to understand if, for example, a
potentiating mutation funnels evolution in a fixed direction.

Ultimately, these analytic replay techniques provide us
with a tool for examining evolution in a prospective fashion,
not just the retrospective approach that we are traditionally
limited to. They will allow for the development of new evo-
Iutionary theory and predictive capacity that will be invalu-
able, both for understanding how meaningful complexity is
produced in the natural world and for improving evolution-
ary applications.
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