
Chapter 1
Characterizing the Effects of Random
Subsampling on Lexicase Selection

Austin J. Ferguson, Jose Guadalupe Hernandez, Daniel Junghans,
Alexander Lalejini, Emily Dolson, and Charles Ofria

1.1 Introduction

Evolutionary computation is often used to solve complex, multi-faceted problems
where the quality of a candidate solution is measured according to its performance
on a large set of test cases. For these test-based problems, we must somehow meld
performances across many test cases to select individuals to serve as parents for
the next generation. In many test-based problems, we cannot exhaustively evaluate
a candidate solution over the entire space of possible test cases. As a result, it can
be challenging to balance the trade-off between using a large enough test set to
thoroughly evaluate candidate solutions while keeping the test set small enough to
preserve computational resources and rapidly progress through generations.

Lexicase selection is a relatively new parent-selection algorithm developed
for genetic programming (GP) and has been demonstrated as an effective tool
for solving difficult test-based problems [11, 12, 27]. Many traditional selection
strategies for solving test-based problems score potential solutions by aggregating
their fitness across all test cases. The lexicase algorithm, however, chooses each
parent for the next generation by sequentially applying test cases in a random order,
keeping only the best performers on each test case until the population has been
winnowed to a single individual. Because the ordering of test cases changes for

A. J. Ferguson (�) · J. G. Hernandez · D. Junghans · A. Lalejini · C. Ofria
The BEACON Center for the Study of Evolution in Action, Michigan State University, East
Lansing, MI, USA
e-mail: fergu358@msu.edu; herna383@msu.edu; junghan2@msu.edu; lalejini@msu.edu;
ofria@msu.edu

E. Dolson
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland,
OH, USA
e-mail: dolsonem@msu.edu

© Springer Nature Switzerland AG 2020
W. Banzhaf et al. (eds.), Genetic Programming Theory and Practice XVII, Genetic
and Evolutionary Computation, https://doi.org/10.1007/978-3-030-39958-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39958-0_1&domain=pdf
mailto:fergu358@msu.edu
mailto:herna383@msu.edu
mailto:junghan2@msu.edu
mailto:lalejini@msu.edu
mailto:ofria@msu.edu
mailto:dolsonem@msu.edu
https://doi.org/10.1007/978-3-030-39958-0_1

2 A. J. Ferguson et al.

every parent selection event, individuals that perform well on different subsets of
test cases are able to co-exist [4, 9].

The drawback of many test-based selection schemes, including lexicase, is
that assessing individuals using a large set of test cases can be computationally
expensive; this drawback is exacerbated when tests are costly to perform (e.g.,
robotics simulations). Using a large number of test cases constrains the number
of generations we are able to run evolutionary search. Using too few test cases,
however, may fail to accurately represent the problem domain and lead to overfit-
ting. To combat this, many techniques dynamically subsample test cases (from a
large pool representative of the problem domain) for candidate solution evaluation
and selection (see [14, 20] for recent reviews). Indeed, subsampling has been used
to reduce computational effort in GP [2, 7] and to improve the generalizability of
evolved programs [8, 20].

In this chapter, we characterize the effects of random subsampling on the
lexicase parent-selection algorithm. Previous work has shown that lexicase selection
performs well when combined with random subsampling. Moore and Stanton
applied random subsampling to lexicase selection in the context of an evolutionary
robotics problem because evaluating robot controllers on test cases (simulation
environments) was too costly to permit exhaustive assessments [23–25]. In [13],
we proposed down-sampled and cohort lexicase selection, two variants of standard
lexicase that employ random subsampling to reduce the number of per-generation
evaluations required by lexicase selection. We demonstrated that both down-
sampled and cohort lexicase could yield higher problem-solving success than
standard lexicase on a fixed evaluation budget in the context of program synthesis
[13].

Here, we explore why random subsampling can improve lexicase selection’s
problem-solving success. Additionally, we characterize the effect of subsampling
on diversity and specialist maintenance, both of which have been shown to be
important factors behind lexicase selection’s efficacy [4, 9, 10, 24]. We show that
the improvement in problem-solving success gained from subsampling is due to
its facilitation of deeper evolutionary searches (i.e., consisting of more generations
relative to standard lexicase) given a fixed evaluation budget. Moreover, we show
that both down-sampled and cohort lexicase find solutions with less computational
effort than standard lexicase. While we predicted that subsampling would degrade
diversity, we find no evidence for systematic degradation of phenotypic diversity.
However, as the level of subsampling increases, cohort lexicase generates and
maintains more phylogenetic diversity than down-sampled lexicase. As expected,
we find that random subsampling degrades specialist preservation relative to
standard lexicase. Our phenotypic diversity results seem to contradict our specialist
preservation findings; this could be because of the particular problems we are using
or because of our choice of time to measure phenotypic diversity (at the time
a solution was found). Future work will continue investigating how subsampling
affects diversity maintenance in an expanded problem domain and with more fine-
grained data collection and analysis.

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 3

1.2 Lexicase Selection

Spector [27] initially proposed the lexicase parent-selection algorithm for solving
modal GP problems where programs may have to output qualitatively different
responses to different inputs. To accomplish this, lexicase does not aggregate fitness
across test cases like many selection schemes. Instead, for each selection event
(where a single parent must be selected), lexicase randomly permutes the test cases
in the training set. Each test case is then considered in this permuted order, keeping
only those candidate solutions that solve the focal test case (or tie for highest
fitness if no candidate solutions solve it). This process continues until either a
single candidate solution remains or all test cases have been exhausted. If more
than one candidate solution remains, the winner is chosen at random. Each selection
event follows this pattern with a different permutation until all parents for the next
generation have been selected. Because the order of test cases changes for every
parent selection event, individuals that perform well on different subsets of test
cases are able to co-exist [4, 9]. This dynamic creates niches in a lexicase population
and encourages multiple co-existing solutions that focus on different subsets of test
cases. See [12, 27] for a more detailed description of lexicase selection.

Since its conception, lexicase selection has been successfully applied in the field
of genetic programming. Such applications include program synthesis [11] and
regression [16]. Lexicase selection has also been in other areas such as evolutionary
robotics [23], genetic algorithms [22], and learning classifier systems [1].

1.2.1 Applying Subsampling to Lexicase Selection

Several variants of lexicase selection (and lexicase-inspired selection algorithms)
exist, such as ε-lexicase, truncated lexicase, batch-tournament, batch-lexicase,
down-sampled lexicase, and cohort lexicase [1, 13, 21, 28]. Here, we investigate
down-sampled and cohort lexicase, both of which leverage random subsampling to
reduce the number of per-generation evaluations required for lexicase selection.

1.2.1.1 Down-Sampled Lexicase

Down-sampled lexicase [13] applies the random subsampling technique [8] to
lexicase selection. Each generation, down-sampled lexicase selects a random subset
of the test-cases in the training set to use for all selection events, guaranteeing that
unselected test cases are not evaluated. Here, we use D to represent our ‘down-
sample factor’, where each generation 1

D
of the training set is used. For example,

a D of 5 implies a 20% subsampling rate (i.e., each generation we use one fifth
of the training set to evaluate individuals). Down sampling divides the number of
evaluations performed each generation by D. Given a fixed budget of evaluations,

4 A. J. Ferguson et al.

the computational savings afforded by down sampling allows us to continue our
evolutionary search for more generations (or with a larger population size) than
standard lexicase selection.

1.2.1.2 Cohort Lexicase

Cohort lexicase selection [13] makes use of the full set of training cases each
generation while also ensuring that each prospective solution is evaluated against
only a subset of tests. Every generation, cohort lexicase randomly partitions both the
population and test-case set into K equally-sized sub-groups (cohorts). Each of the
K candidate solution cohorts is paired with a test-case cohort, and each candidate
solution is evaluated against only the test cases in its cohort. Thus, the number of
evaluations performed each generation (relative to standard lexicase selection) is
divided by K . Candidate solutions compete only within their cohort, and within-
cohort competition is arbitrated by the test cases in the associated cohort. Because
cohorts are shuffled each generation, offspring will be assessed with a different
subset of test cases than their parents. Note that the down-sampling factor, D, is
identical to the number of cohorts, K , in both the total number of evaluations and the
number of training cases a candidate solution sees per generation. Thus, K and D

provide equivalent subsampling rates for the two selection schemes, and hereafter,
we substitute D for K to simplify comparisons between down-sampled and cohort
lexicase.

1.3 Methods

We conducted a series of experiments to characterize the effects of applying
random subsampling to lexicase selection. In all evolution experiments, we evolved
populations of linear genetic programs to solve four program synthesis problems.
Using this setup, we replicated previous results [13], tested the effect of the
additional generations afforded by subsampling, and investigated how different
types of subsampling affect the computational effort expended to solve problems.
Additionally, we analyzed how these subsampling techniques affect both population
diversity and specialist maintenance.

1.3.1 Evolutionary System

For each of our evolution experiments, we evolved populations of 1000 linear
genetic programs on four program synthesis problems (each described in detail in
Sect. 1.3.2). Our linear-GP representation used:

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 5

• an instruction set that includes arithmetic, memory management, flow-control,
and additional problem-specific instructions

• memory accessed with binary tags [18]
• modules referenced via binary tags [17, 29]

A more detailed description of our GP system (including source code) can be
found in the supplemental material [5].

We propagated programs asexually, subjecting offspring to mutations. Single-
instruction insertions, deletions, and substitutions were applied, each at a per-
instruction rate of 0.005. Modules were duplicated and deleted at a per-module
rate of 0.05. We also applied ‘slip’ mutations [19], which have the possibility of
duplicating or deleting sequences of instructions, at a per-program rate of 0.05.
Program-tags were mutated at a per-bit rate of 0.001. The run-termination criteria
varied per experiment and is included in each experiment description.

1.3.2 Program Synthesis Problems

For all evolution experiments, we evolved programs to solve problems from the
general program synthesis benchmark suite [11]. To test our hypotheses, we needed
a set of problems known to be challenging but not impossible for GP systems to
solve. The general program synthesis benchmark suite comprises introductory-level
computer science programming questions, many of which have been solved using
lexicase selection [6, 11]. We used the following four program synthesis problems
in our experiments: Smallest, Median, For Loop Index, and Grade. A description of
each problem is given below:

Smallest Programs are given four integer inputs (−100 ≤ inputi ≤ 100) and must
output the smallest value. We measured program performance on a pass-fail basis.
We limited program length to a maximum of 64 instructions and also limited the
maximum number of instruction-execution steps to 64.

Median Programs are given three integer inputs (−100 ≤ inputi ≤ 100) and must
output the median value. We measured program performance against test cases on
a pass-fail basis. We limited program length to 64 instructions and also limited the
maximum number of instruction-execution steps to 64.

For Loop Index Programs receive three integer inputs start (−500 ≤ start ≤ 500),
end (−500 ≤ end ≤ 500), (start < end), and step (1 ≤ step ≤ 10). Programs must
output the following sequence:

n0 = start

ni = ni−1 + step

6 A. J. Ferguson et al.

for each ni < end. We limited program length to a maximum of 128 instructions and
also limited the maximum number of instruction-execution steps to 256. Program
performance against a test case was measured on a gradient, using the Levenshtein
distance between the program’s output and the correct output sequence.

Grade Programs receive five integers in the range [0, 100] as input: A, B, C, D,
and score. A, B, C, and D define the minimum score needed to receive that letter
grade. These are specified such that A > B > C > D (i.e., they are monotonically
decreasing and unique). The program must read in these thresholds and return the
appropriate letter grade for the given score, or F if score < D. We limited program
length to a maximum of 64 instructions and also limited programs’ maximum
instruction-execution steps to 64. On each test, we evaluated programs on a pass-fail
basis.

For these experiments, the Smallest, Median, and For Loop Index problems have
an associated training set of 100 test cases, and a separate validation set of 1000
test cases (withheld during fitness evaluations). We used 200 training cases and
2000 validation cases for the Grade problem. A program had to solve all test cases
in both the training and validation sets to be considered a “perfect” solution. All
training and validation sets can be found in the supplemental material [5].

1.3.3 Experimental Design

We conducted five experiments: (1) we replicated a previous experiment [13] to
evaluate subsampling’s effect on lexicase selection’s problem-solving success; (2)
we tested whether or not subsampling improves problem-solving success because it
facilitates deeper evolutionary searches; (3) we evaluated whether subsampling can
reduce the computational effort expended by lexicase selection to solve problems;
(4) we tested the effect of random subsampling on lexicase selection, comparing
the diversity maintenance of standard, down-sampled, and cohort lexicase; (5)
we compared each of standard, down-sampled, and cohort lexicase’s capacity to
maintain specialist candidate solutions (i.e., programs with low aggregate fitness
that solve test cases that the majority of the population fails).

1.3.3.1 Does Subsampling Improve Lexicase Selection’s Problem-Solving
Success Given a Fixed Computation Budget?

First, we replicated the experiment conducted in Hernandez et al. [13] where both
down-sampled and cohort lexicase improved problem-solving success relative to
standard lexicase selection. To evaluate whether subsampling improves lexicase’s
problem-solving success, we evolved programs using down-sampled, cohort, and
standard lexicase selection to solve each of the four program synthesis problems
(described in Sect. 1.3.2). While the sets of program synthesis problems are not

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 7

identical, the main difference between the two experiments is that our previous work
included a test case that was designed to minimize program size of candidate solu-
tions that solved all normal test cases; this minimizing test case was discarded for
all experiments in this work. For a control, we also tested reduced lexicase: standard
lexicase performed on a statically reduced training set that was randomly sampled at
the beginning of the run. Reduced lexicase is similar to down-sampled lexicase, with
the exception that test cases remain constant throughout the evolutionary search and
are not sampled every generation.

All three of these lexicase variants were tested at five subsampling levels: 100%
(identical to standard lexicase), 50, 25, 10 and, 5% (D = 1, 2, 4, 10, and 20,
respectively). For standard lexicase and each variant, we limited each instance to a
maximum computation budget of 30,000,000 evaluations.1 Thus, standard lexicase
ran for 300 generations, and the subsampled variants ran for 300, 600, 1200, 3000,
and 6000 generations, respectively. We compared the problem-solving success (i.e.,
the number of replicates that produced a perfect solution) of each variant to standard
lexicase. For each problem, we ran 50 replicates (each with a unique random seed)
of each subsampled configuration, and 250 replicates (each with a unique random
seed) of standard lexicase (50 replicates for each subsampling level).

1.3.3.2 Does Subsampling Improve Lexicase Selection’s Problem-Solving
Success Because it Facilitates Deeper Searches?

Both down-sampled and cohort lexicase perform fewer test case evaluations per
generation than standard lexicase, allowing us to run evolutionary searches for more
generations given a fixed computation budget (i.e., a fixed number of total test case
evaluations). We expected that subsampling improves lexicase’s problem-solving
success because it enables deeper searches. To test this hypothesis, we repeated the
performance experiment (described previously in Sect. 1.3.3.1), except we evolved
all populations (regardless of selection scheme and subsampling level) for 300
generations. We compared the number of successful replicates from each of down-
sampled, cohort, and standard lexicase. If down-sampled and cohort lexicase lose
their performance edge over standard lexicase, the distinction must come from the
time after the 300 generation limit that they would have continued evolving. This
finding would suggest that subsampling’s improved problem-solving success results
from its facilitation of deeper evolutionary searches.

1Evaluating a single program on a single test case is one test case evaluation.

8 A. J. Ferguson et al.

1.3.3.3 Does Random Subsampling Reduce the Computational Effort
Required to Solve Problems with Lexicase Selection?

Our previous work [13] shows that subsampling can improve lexicase selection’s
problem-solving success given a fixed computational budget. Here, we are interested
in whether or not subsampling reduces the total computational effort required to
find solutions; that is, do down-sampled and cohort lexicase generally find solutions
using fewer total evaluations than standard lexicase selection? We evolved programs
on the four program synthesis problems described previously (Sect. 1.3.2) using
down-sampled, cohort, and standard lexicase (at a 10% subsampling level for down-
sampled and cohort lexicase). For each condition, we ran 50 replicate populations.
Because we wanted to compare how much computational effort it generally took
for a particular selection scheme to solve a problem, we only used data from the
first 25 replicates of each condition to solve the problem (i.e., the 25 replicates
per condition that used the least computational effort). We also included truncated
lexicase [28], another lexicase selection variant that works to reduce the rigidness
in lexicase selection by limiting the number of test cases used in a selection event
before a candidate solution is selected. Truncated lexicase also has the potential to
reduce the computational effort needed to find solutions. For our truncated lexicase
condition, we used a truncation level equal to 10% of the training set.

1.3.3.4 Does Subsampling Degrade Lexicase Selection’s Diversity
Maintenance?

Part of lexicase selection’s success is known to be the result of its effectiveness
at diversity maintenance [4, 9, 24]. Subsampling, however, is likely to degrade
diversity maintenance because it both reduces the total number of niches available
each generation (i.e., there are fewer possible orderings of test cases) and decreases
niche stability from generation to generation (i.e., the set of possible test case
permutations changes every generation). Thus, we expected populations evolved
using down-sampled and cohort lexicase selection to have lower overall diversity
and more frequent selective sweeps (coalescence events) than those evolved with
standard lexicase selection. Additionally, cohort lexicase inherently buffers popula-
tions against selective sweeps, slowing down the rate at which a lineage can take
over a population by limiting competition each generation to within cohorts. As
such, we expected cohort lexicase to have fewer selective sweeps (and thus more
phylogenetic diversity) than down-sampled lexicase.

To test our hypotheses, we replicated the experiment in Sect. 1.3.3.1, running
both subsampling lexicase variants (at a range of subsampling levels) and standard
lexicase for 30,000,000 total evaluations. In these runs, we collected data on
genotypic, phenotypic, and phylogenetic diversity. We measured genotypic and
phenotypic diversity with the Shannon diversity index. To assess phylogenetic
diversity, we used a suite of phylogenetic diversity metrics (see [3] for a review).
After all replicates terminated, we analyzed the results of each of these diversity

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 9

measures at the time solutions were found.2 Within each subsampling level, we
compared cohort, down-sampled, and standard lexicase selection.

1.3.3.5 Does Subsampling Reduce Lexicase Selection’s Capacity to
Maintain specialists?

Recent work Helmuth et al. [10] demonstrates lexicase’s tendency to select spe-
cialist individuals (i.e., individuals that have a low aggregate fitness but perform
well on a subset of tests that the majority of the population fails). Helmuth et
al. found that lexicase’s ability to select specialists is a major driver behind its
problem-solving success. Just as we expected subsampling to degrade lexicase
selection’s diversity maintenance, we also expected subsampling to inhibit specialist
maintenance. Because specialists perform well on few test cases (and potentially
poorly on the rest), a specialist’s likelihood of being selected by lexicase selection
is reduced if any of the test cases it passes are not sampled. Thus, we hypothesized
that both down-sampled and cohort lexicase reduce lexicase selection’s capacity to
maintain specialist individuals.

To test our hypothesis, we investigated the extreme case of populations with
a single specialist. We generated hypothetical populations, each containing a
‘specialist’ and many ‘generalists’. In each generated population, the specialist
individual was able to solve only one focal test case, and none of the generalists were
allowed to solve the focal test case. We varied the probability at which generalists
could solve each non-focal test case, ranging from 0.1 to 1.0 (where all generalists
solved all non-focal test cases). We also varied population size and the total number
of test cases. Table 1.1 shows all parameter values used in this experiment. We
generated 100 populations for each combination of these parameters.

Table 1.1 Generated population configurations

Parameter Values

Population size 10, 20, and 100

test cases 10, 20

Generalist pass rate on non-focal tests 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

We generated 100 populations for all combinations of the parameters given in this table

2 Choosing when to measure diversity in evolutionary computation is an interesting problem.
In evolutionary computation, diversity maintenance is often viewed as a mechanism to avoid
premature convergence on suboptimal solutions. If our goal is to compare how well different
selection schemes maintain diversity, when should we measure diversity? Measuring diversity
after a global solution is found is not particularly meaningful, as finding the solution often
causes the population to converge, decreasing diversity. We measured diversity at the time the
solution is found to mitigate this problem. However, this solution only partially addresses the
underlying problem: the process of evolution often involves many selective sweeps and subsequent
divergences and we cannot know where in this cycle our measurements occurred.

10 A. J. Ferguson et al.

For each population, we calculated the probability of each candidate solution
being selected at least once to be a parent in the next generation under standard,
down-sampled, and cohort lexicase selection. For standard lexicase selection, we
calculated exact probabilities: we enumerated all possible orderings of test cases,
counting the number of enumerations where each candidate solution is selected.
This is intractable for the subsampled lexicase variants, so we took a sampling
approach. To approximate the selection probability in the lexicase variants, we
randomly subsampled the population according to the selection scheme being
tested. After subsampling, down-sampled lexicase is equivalent to standard lexicase
with fewer test cases, while cohort lexicase is equivalent to standard lexicase
conducted separately on each cohort. Thus, we calculated the selection probabilities
for each candidate solution with that particular random subsampling. This process
was repeated 100,000 times to approximate the true selection probabilities under
down-sampled and cohort lexicase. These calculations allowed us to compare the
specialist’s selection probability across configurations.

1.3.4 Statistical Analyses

All statistics were calculated using the R statistical computing language v3.6.0
[26], and all figures in this work were created using the ggplot2 R package [31].
We compared problem-solving success rates among different independent condi-
tions using Fisher’s exact tests, and we corrected for multiple comparisons using
the Holm–Bonferroni method where appropriate. For measures of computational
effort and diversity, we performed a Kruskal–Wallis test to look for statistically
significant differences among independent conditions. For comparisons in which
the Kruskal–Wallis test was significant (significance level of 0.05), we performed a
post-hoc Mann–Whitney test between relevant conditions (with a Holm–Bonferonni
correction for multiple comparisons where appropriate). Statistical analyses for the
specialist experiment also used a Kruskal–Wallis test, but swapped the Mann–
Whitney test for a Wilcoxon test because the data were paired. Analysis and
visualizations scripts can all be found in the supplemental material [5].

1.4 Results and Discussion

1.4.1 Subsampling Improves Lexicase Selection’s
Problem-Solving Success

Figure 1.1 shows the fraction of replicates where a perfect solution evolved within
30,000,000 evaluations under each of down-sampled, cohort, reduced, and standard
lexicase selection. For each program synthesis problem, we conducted a Fisher’s

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 11

0.060
1.000
0.960

0.200
0.960
0.920

0.280
0.820
0.760

0.700
0.740
0.820

0.616

*
*
*

*
*
*

*
*

*

0.000
0.960
0.920

0.100
0.940
0.900

0.380
0.860
0.820

0.720
0.780
0.700

0.660

*
*
*

*
*
*

*
*

0.460
0.880
0.800

0.680
0.800
0.660

0.660
0.600
0.600

0.580
0.560
0.580

0.436

*
*

*
*

0.020
0.960
1.000

0.060
0.940
0.920

0.580
0.880
0.820

0.460
0.720
0.720

0.276

*
*
*

*
*
*

*
*
*

*
*
*

Smallest Median For Loop Index Grade

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

5%

10%

25%

50%

None

Fraction of Runs that Found Perfect Solutions

S
ub

sa
m

pl
in

g
Le

ve
l

Lexicase Selection Variant Standard Reduced Down−sampled Cohort

Perfect Solutions Found − Constant Evaluations

Fig. 1.1 Problem-solving success after 30,000,000 evaluations. Bars show the fraction of repli-
cates that found a perfect solution. An asterisk (*) to the left of a bar denotes a significant
difference compared to the standard lexicase results (using a Holm–Bonferroni correction for
multiple comparisons). Results for standard lexicase (light purple) consist of 250 replicates per
problem, while results for reduced lexicase (dark purple), down-sampled lexicase (yellow), and
cohort lexicase (orange) consist of 50 replicates for each configuration

exact test (0.05 significance level) between the 250 standard lexicase replicates
and the 50 subsampled replicates of each experimental condition; we corrected for
multiple comparisons using the Holm–Bonferonni method.

Our data are largely consistent with previous work [13]. For three of the four
problems (Smallest, Median, and Grade), statically reducing the training set beyond
a critical threshold significantly decreased problem-solving success. For example, at
5 and 10% subsampling levels, reduced lexicase performs significantly worse than
standard lexicase in each of the Smallest, Median, and Grade problems. Reduced
lexicase rarely outperformed standard lexicase, only doing so in three cases: Grade
at 25 and 50% subsampling, and For Loop Index at 10% subsampling. Statically
reducing the size of the training set did not inhibit our capacity to solve the For
Loop Index problem; we suspect this is because the training set (100 test cases) is
much larger than necessary. The same trend is true for 50- and 25%-reduced lexicase
on the Grade problem.

Both down-sampled and cohort lexicase performed significantly better than
standard lexicase on at least one subsampling level for every problem. Specifically,
down-sampled lexicase significantly outperformed standard lexicase on all prob-
lems at the 5 and 10% subsampling levels, while cohort lexicase also outperformed
standard lexicase at 5 and 10% subsampling on all problems except For Loop Index
at the 10% subsampling level. Neither down-sampled nor cohort lexicase performed
significantly worse than standard lexicase in any experimental configuration.

12 A. J. Ferguson et al.

These results achieved better performance on more extreme subsampling levels
than in [13]; this is because we removed all selection pressure to reduce program
size. In this previous work, we included a single test case that favored small
programs that only took effect when a program solved all other test cases it was
evaluated against. At high subsampling levels (e.g., 5%), it is easy for programs
that do not generalize well to prematurely trigger this size-minimization test case,
which negatively impacted problem-solving success rates.

These results support our previous claim that subsampling can improve lexicase
selection’s problem-solving success. Although there is evidence that subsampling
can improve solution rates, a different approach is needed to tease apart why this
difference exists, or how down-sampled and cohort lexicase actually differ.

1.4.2 Deeper Evolutionary Searches Contribute to
Subsampling’s Success

Figure 1.2 shows the fraction of replicates where a perfect solution evolved after 300
generations under each of down-sampled, cohort, and standard lexicase selection.
After 300 generations, conditions with aggressive subsampling (e.g., 5%) have made
fewer total evaluations than conditions with milder subsampling (e.g., 50%) or stan-
dard lexicase. To be exact, 50, 25, 10, and 5% subsampling complete 15,000,000,

0.180

0.120

0.260

0.220

0.220

0.400

0.620

0.560

0.592

*
*

*
*

*

0.080

0.060

0.320

0.240

0.500

0.440

0.720

0.600

0.664

*
*

*
*

*

0.260

0.120

0.380

0.200

0.420

0.360

0.300

0.300

0.472

*

*
0.000

0.040

0.040

0.080

0.100

0.060

0.240

0.160

0.224

*
*

*

*

Smallest Median For Loop Index Grade

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

5%

10%

25%

50%

None

Fraction of Runs that Found Perfect Solutions

S
ub

sa
m

pl
in

g
Le

ve
l

Lexicase Selection Variant Standard Down−sampled Cohort

Perfect Solutions Found − Constant Generations

Fig. 1.2 Evolutionary results at the end of 300 generations. Bars show the fraction of replicates
that found a perfect solution on or before 300 generations. An asterisk (*) to the left of a bar denotes
significant difference compared to the standard lexicase results. Results for standard lexicase (light
purple) consist of 250 replicates per problem, while results for down-sampled lexicase (yellow)
and cohort lexicase (orange) consist of 50 replicates for each experimental configuration

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 13

7,500,000, 3,000,000, and 1,500,000 evaluations, respectively. We hypothesized
that random subsampling improves lexicase selection because it allows evolutionary
searches to run for more generations given a fixed evaluation budget. By terminating
all replicates after 300 generations, we expected subsampling to lose its advantage
over standard lexicase.

Given a fixed number of generations, neither down-sampled nor cohort lexicase
significantly outperformed standard lexicase at any subsampling level. In fact,
down-sampled and cohort lexicase performed significantly worse than standard
lexicase on all problems with 5 and 10% subsampling rates except in three cases:
cohort at 10% subsampling on Grade, down-sampled at 10 and 5% subsampling on
For Loop Index.

As shown in Sect. 1.4.1, when given equivalent computational budgets (i.e., total
number of training case evaluations), subsampling significantly improves lexicase’s
problem-solving success. However, this experiment shows that when we restrict
down-sampled and cohort lexicase to the same number of generations as standard
lexicase, they both have significantly diminished success on the same problems.
These data support our hypothesis that deeper evolutionary searches contribute to
the success of the subsampled variations on lexicase selection.

1.4.3 Subsampling Reduces Computational Effort

Next, we explored how subsampling affects the amount of computational effort
required to solve problems in the context of lexicase selection. For this experiment,
we removed all evaluation and generation termination criteria. Figure 1.3 shows the
number of test case evaluations in each of the first 25 replicates for each condition in
which a solution evolved (i.e., the 25 replicates that required the least computational
effort to solve the problem). We performed a Kruskal–Wallis test (significance level
0.05) to look for significant differences among selection schemes for each program
synthesis problem. For problems in which the Kruskal–Wallis test was significant,

** *** ** **

Smallest Median For Loop Index Grade

1e+06

1e+07

1e+08

N
um

be
r

of
 E

va
lu

at
io

ns

Lexicase Selection Variant Standard Down−sampled (10%) Cohort (10%) Truncated (10%)

Computational Effort

Fig. 1.3 The number of evaluations required for each treatment to solve the specified problems.
The 25 replicates with the fewest evaluations for each treatment are shown. An asterisk (*) under
a box denotes significant difference between that treatment and standard lexicase

14 A. J. Ferguson et al.

we performed a post-hoc Mann–Whitney test between standard lexicase and each
of the down-sampled, cohort, and truncated lexicase (with a Holm–Bonferonni
correction for multiple comparisons).

Both down-sampled and cohort lexicase used significantly fewer evaluations than
standard lexicase on all four problems. Across all problems, truncated lexicase did
not use significantly fewer evaluations than standard lexicase; on the Median prob-
lem, truncated lexicase actually used significantly more evaluations than standard
lexicase. The data show a clear trend that 10% subsampling, whether via down-
sampling or cohorts, can significantly reduce the number of evaluations needed to
solve these program synthesis problems. However, truncated lexicase (using 10% of
the training cases per selection event) causes either no effect or a significant increase
in required evaluations.

1.4.4 Subsampling Does Not Systematically Decrease
Phenotypic Diversity in Lexicase Selection

Mutations to the binary tags used by the programs to reference modules and
memory are often silent (i.e., the phenotype and fitness remain the same) allowing
populations to endure high mutation rates that drive adaptive evolution. As a
result, almost all replicates maximize genotypic diversity, rendering comparisons
uninformative. Therefore, we examined the phenotypic diversity of lexicase and the
two subsampled variants.

When evolution produced a candidate solution capable of solving all test cases
in the training set, we immediately tested that solution on the cases in the reserved
validation set as well. If this candidate solution continued to pass all test cases, we
declared it a “perfect solution” and proceeded to measure the phenotypic diversity
of the population it arose from. To do so, we tested all programs in the population
on all test cases across both the training and validation sets. We designated each
candidate solution’s performances (in sequence) on all test cases as that solution’s
phenotype. Figure 1.4 shows the Shannon diversity of these results.

Minimal evidence was found to support our hypothesis that subsampling results
in a reduction of phenotypic diversity. After comparing the phenotypic diversity
of both down-sampled and cohort lexicase to the standard algorithm, only 2
of 32 configurations resulted in a significant decrease in phenotypic diversity,
both of which were down-sampled configurations. Conversely, cohort lexicase
actually had significantly higher phenotypic diversity than standard lexicase in two
configurations. Further, cohort lexicase results had a significantly higher phenotypic
diversity than down-sampled lexicase in 4 of 16 comparisons.

With only two configurations leading to decreased phenotypic diversity, we
cannot conclude that there is a systematic decrease in phenotypic diversity due
to subsampling for these program synthesis problems. However, these results hint

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 15

†

† ‡

‡

† ‡

‡

‡

‡

‡

† ‡

Smallest Median For Loop Index Grade

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

5%

10%

25%

50%

None

Shannon Diversity

S
ub

sa
m

pl
in

g
Le

ve
l

Lexicase Selection Variant Standard Down-sampled Cohort

Phenotypic Diversity

Fig. 1.4 Shannon diversity of candidate solution phenotypes at the first generation a perfect
solution was found; individual phenotypes were measured as a program’s performance on each
test from the training and validation sets. A dagger (†) above a box denotes significant difference
with standard lexicase. A double dagger (‡) denotes significant difference between cohort lexicase
and down-sampled lexicase at that subsampling level. Results consist of replicates that found a
perfect solution out of 250 replicates for standard lexicase on each problem (purple boxes) and
50 replicates for each combination of problem and subsampling level for down-sampled lexicase
(yellow boxes) and cohort lexicase (orange boxes)

at a difference between diversity due to down-sampled lexicase and cohort lexicase;
we plan to explore this difference in future work.

1.4.5 Cohort Lexicase Enables More Phylogenetic Diversity
Than Down-Sampled Lexicase

As with phenotypic diversity, we recorded the phylogenetic diversity metrics at
the time point when populations first found a perfect solution. This timing was
necessary; the discovery of a perfect solution is likely to produce a selective sweep,
radically altering the structure of the phylogeny. An unavoidable side effect is that
the measurements are taken after different numbers of generations have elapsed
in different replicates. This discrepancy is potentially concerning, as phylogenetic
diversity measurements are sensitive to the number of generations represented
within the phylogeny. Adding more generations will, in many cases, legitimately
increase the diversity of evolutionary history that a population contains. However,
the number of generations elapsed can have a disproportionately large effect on a
phylogenetic diversity metric, swamping out other effects. In this case, it is these

16 A. J. Ferguson et al.

other effects that we are most interested in, as we have already analyzed the causes
and effects of the number of generations a population goes through. Fortunately,
our results comparing down-sampled vs. cohort lexicase do not appear to be driven
by variation in the number of generations elapsed, as the distribution of generations
at which the first perfect solution was found did not vary consistently within any
subsampling level. Because this distribution did vary among subsampling levels,
we are not attempting to make any strong claims about the relationship between
phylogenetic diversity and degree of subsampling. Here we examine only two of
the pyhlogenetic metrics that were calculated; plots, descriptions, and statistics of
all recorded metrics can be found in the supplemental material [5].

The most recent common ancestor (MRCA) is the most recently evolved candi-
date solution from which all extant candidate solutions descend. For this experiment
we tracked the MRCA throughout the evolutionary search, and we examined the
number of selective sweeps by counting the number of times the MRCA changed
(see Fig. 1.5). For all problems tested, cohort lexicase has significantly fewer
MRCA changes than down-sampled lexicase for 5, 10, and 25% subsampling levels.
This pattern suggests that cohort lexicase inhibits selective sweeps in a way that
down-sampled lexicase does not. A likely mechanism for this behavior is that,
by explicitly fragmenting the population into groups, cohort lexicase prevents any
single candidate solution from sweeping more than one cohort per generation.

Another phylogenetic measure we examined was the phylogenetic divergence
(i.e., how distinct the extant taxa are from each other) [3]. Here we quantify

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

Smallest Median For Loop Index Grade

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

5%

10%

25%

50%

Number of Changes

S
ub

sa
m

pl
in

g
Le

ve
l

Lexicase Selection Variant Down-sampled Cohort

Most Recent Common Ancestor (MRCA) Changes

Fig. 1.5 Number of times the most recent common ancestor (MRCA) of all extant candidate
solutions changed for each evolutionary run. Changes shown on a logarithmic scale. A dagger
(†) above a box denotes significant difference between cohort lexicase and down-sampled lexicase
at that subsampling level. All results shown are from the replicates that found a perfect solution
out of 50 replicates per experimental condition

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 17

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

†

Smallest Median For Loop Index Grade

10 100 1000 10 100 1000 10 100 1000 10 100 1000

5%

10%

25%

50%

Mean Distance

S
ub

sa
m

pl
in

g
Le

ve
l

Lexicase Selection Variant Down-sampled Cohort

Mean Pairwise Distance

Fig. 1.6 Mean distance between all pairs of extant taxa in the phylogenetic tree for runs of both
subsampled lexicase variants at different subsampling levels. A dagger (†) above a box denotes
significant difference between cohort lexicase and down-sampled lexicase at that subsampling
level. All results shown consist of the replicates that found a perfect solution out of 50 replicates
per experimental condition

phylogenetic divergence via mean pairwise distance of the extant solutions in the
phylogeny. This metric is calculated as the average distance in the phylogenetic tree
between each pair of extant candidate solutions (see Fig. 1.6) [30]. Cohort lexicase
has significantly higher mean pairwise distance than down-sampled lexicase for
all problems at the 5 and 10% subsampling levels. This result indicates that
cohort lexicase has significantly higher phylogenetic divergence than down-sampled
lexicase, providing further evidence that cohort lexicase is better than down-sampled
lexicase at maintaining phylogenetic diversity. Other phylogenetic diversity metrics
were consistent with these results.

Because the differing generation counts prevent us from meaningfully comparing
phylogenetic diversity across subsampling levels, all we can say conclusively is that
subsampling does not appear to decrease phylogenetic diversity. That said, it may
well be the case that greater phylogenetic diversity helps produce better candidate
solutions. If so, this factor could explain why more generations (as opposed to
more evaluation thoroughness) increases the computational efficiency of lexicase
selection. A more targeted investigation will be required to determine how important
phylogenetic diversity is to the success of lexicase selection variants.

18 A. J. Ferguson et al.

1.4.6 Subsampling Degrades Specialist Maintenance

Across experimental conditions, lexicase selection has a significantly higher prob-
ability of selecting the specialist than either subsampled variant (see Fig. 1.7). This
result supports our hypothesis that subsampling degrades specialist preservation.
Interestingly, down-sampled and cohort lexicase behave differently across the con-
ditions. Exploring these differences can help us better understand the mechanisms
that cause a lexicase variant to favor specialists.

When population size is large, down-sampled and cohort lexicase behave
nearly identically. At higher subsampling rates specialists have a higher survival
probability in both treatments. At smaller population sizes, higher subsampling rates
continue to demonstrate a higher survival probability of specialists in down-sampled
lexicase, but not always in cohort lexicase.

At the extreme, when population size, subsampling rate, and generalist pass
rate are all small, cohort lexicase has a drastically higher probability of specialist
survival than down-sampled lexicase. In this case, the specialist benefits from the
low generalist pass rate, since many non-specialists will fail to solve many of the test
cases. Specifically, if all candidate solutions competing against the specialist fail a
given test case, it will be non-discriminatory and effectively ignored. This effect is
more pronounced in cohort lexicase, when the specialist is competing only within

* **

* **

*

* **

Population Size 20 Population Size 100

10%
 S

u
b

sam
p

lin
g

50%
 S

u
b

sam
p

lin
g

20% 50% 100% 20% 50% 100%

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Non−Focal Candidate Solution Pass Rate

S
pe

ci
al

is
t S

ur
vi

va
l C

ha
nc

e

Lexicase Selection Variant Standard Down−sampled Cohort

Specialist Preservation Probability

Fig. 1.7 Bars show the median probability that a focal specialist will be selected as a parent in the
next generation at least once; data are aggregated over 100 experimental populations. Error bars
show the minimum and maximum probabilities across all populations for that configuration. The
dashed lines show the expected probability for both subsampled lexicase variants for configurations
where population size is 100. An asterisk (*) denotes a significant difference between cohort
lexicase and down-sampled lexicase; standard lexicase was always significantly different. All
configurations shown are for 20 test cases

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 19

its cohort (e.g., a cohort of size 2 for a population size of 20 with 10% subsampling),
rather than the full population. At a population size of 100, this benefit is lessened
because cohorts still contain a relatively large number of candidate solutions. In
the remaining configurations, down-sampled lexicase has a higher probability of
specialist survival than cohort lexicase.

To better understand these probabilities, consider a situation with two constraints:
(1) the specialist solves only its one assigned test case, and (2) every other candidate
solution can solve all test cases but the specialist’s (i.e., the generalist pass rate is
1.0). While the situation is improbable, it is the worst-case scenario for selecting
the specialist; relaxing either constraint could only increase the chance of selecting
the specialist. In this situation, the specialist’s odds of selection in a single selection
event under lexicase selection is 1

T
where T is the number of test cases; that is, the

probability of its focal test case being chosen first. The specialist’s probability of
selection for the entire next generation can be expressed as Eq. 1.1 where N is the
total population size [4] (for further discussion of selection probabilities under full
lexicase selection, see [15]).

Plexicase = 1 − (1 − 1

T
)N (1.1)

We can modify Eq. 1.1 to accommodate down-sampled lexicase by accounting
for two cases. First, the specialist’s sole test case can be included in the test cases
used for this generation, in which case the specialist has a D

T
chance of being

selected (recall D is the down-sample factor, which divides the number of training
cases such that each organism sees 1

D
of the full training set each generation).

Otherwise the specialist’s test case is not included, and the specialist has no chance
of being selected. Thus, we arrive at Eq. 1.2.

Pdown-sampled = 1 − (1 − D
T

)N

D
(1.2)

Finally, we can also account for cohort lexicase selection. Cohort lexicase also
gives the specialist a 1

D
chance of being evaluated against its sole test case. The

only difference is in the number of selection events; cohort lexicase can be thought
of as standard lexicase being conducted on each cohort. Thus, in the case where the
specialist is in the same cohort as its test case, it does not have N selection events to
be selected, but instead N

D
. This gives us the final equation, Eq. 1.3.

Pcohort = 1 − (1 − D
T

)
N
D

D
(1.3)

Plotting these equations, we can see both that down-sampled and cohort lexicase
approach a maximum specialist survival probability of 1

D
, and that down-sampled

approaches that limit at lower population sizes than cohort lexicase (see Fig. 1.8).
The plots also show that increasing the number of training cases increases the

20 A. J. Ferguson et al.

20 Tests 100 Tests 250 Tests

10%
 S

u
b

sam
p

lin
g

25%
 S

u
b

sam
p

lin
g

50%
 S

u
b

sam
p

lin
g

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Population Size

P
re

di
ct

ed
 S

pe
ci

al
is

t S
ur

vi
va

l C
ha

nc
e

Lexicase Selection Variant Standard Down−sampled Cohort

Worst−case Specialist Preservation

Fig. 1.8 Probabilities that the focal specialist will be selected to be a parent in the next generation
at least once in the situation where there is one specialist, which solves only one test case, but
is also the only candidate solution to solve that specific test case. Meanwhile, all other candidate
solutions solve all other test cases. Note the special case of a population size of 10 with 10%
subsampling. Here, each cohort has one solution, which guarantees selection exactly once with no
selective pressure

required population size to reach the 1
D

limit. Thus the two subsampled lexicase
variants have the same maximum specialist selection probability, but smaller
populations will see a lower value for cohort lexicase. These theoretical findings
help explain our empirical results.

Again, this is the worst-case scenario for the specialist. Further work is needed to
see how specialist preservation changes under different situations (e.g., more copies
of the specialist, less elite generalists, specialists that solve more than one test case,
etc.). Figure 1.8 shows only the lower bound on the specialist selection probability.

1.5 Conclusion

Here, we investigated the effects of random subsampling on lexicase selection. We
replicated previous results [13], demonstrating that subsampling improves lexicase’s
problem-solving success, and we have shown that subsampling’s success is a result
of it enabling deeper evolutionary searches (i.e., running searches for more genera-

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 21

tions). Moreover, we have shown that subsampling reduces the total computational
effort required to evolve solutions in the context of lexicase selection. We expected
that applying subsampling to lexicase selection would degrade phenotypic diversity,
but have found no evidence of systematic degradation. However, we did find
evidence that cohort lexicase is better at generating and preserving phylogenetic
diversity than down-sampled lexicase. Finally, we have shown that subsampling
does reduce lexicase’s capacity to maintain specialist individuals.

Overall, our results highlight the value of random subsampling in lexicase
selection, showing that it can improve problem-solving success and save compu-
tational effort. However, we also demonstrate that subsampling degrades specialist
preservation, and as such, for problems where maintaining specialists is especially
important, subsampling might have an overall negative effect on problem-solving
success. Future work should explore how subsampling affects both overall popula-
tion diversity and specialist maintenance at a fine-grained scale and on a wider range
of problem types.

Acknowledgements This research was supported by the National Science Foundation through
the BEACON Center (Coop. Agreement No. DBI-0939454), a Graduate Research Fellowship to
AL (Grant No. DGE-1424871), and Grant No. DEB-1655715 to CO. Michigan State University
provided computational resources through the Institute for Cyber-Enabled Research.

References

1. Aenugu, S., Spector, L.: Lexicase selection in learning classifier systems. In: Proceedings of
the Genetic and Evolutionary Computation Conference - GECCO 2019, pp. 356–364. ACM
Press, Prague, Czech Republic (2019)

2. Curry, R., Heywood, M.: Towards efficient training on large datasets for genetic programming.
In: A. Tawfik, S. Goodwin (eds.) Conference of the Canadian Society for Computational
Studies of Intelligence, pp. 161–174. Springer (2004)

3. Dolson, E., Lalejini, A., Jorgensen, S., Ofria, C.: Quantifying the tape of life: Ancestry-
based metrics provide insights and intuition about evolutionary dynamics. In: Artificial Life
Conference Proceedings, pp. 75–82. MIT Press (2018)

4. Dolson, E.L., Banzhaf, W., Ofria, C.: Ecological theory provides insights about evolutionary
computation. preprint, PeerJ Preprints (2018). URL https://peerj.com/preprints/27315

5. Ferguson, A.: FergusonAJ/gptp-2019-subsampled-lexicase: GPTP Chapter Companion
(2020). https://doi.org/10.5281/zenodo.3679380, https://github.com/FergusonAJ/gptp-2019-
subsampled-lexicase

6. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: Towards Understanding and Refining
the General Program Synthesis Benchmark Suite with Genetic Programming. In: 2018 IEEE
Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE, Rio de Janeiro (2018)

7. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in Genetic
Programming. In: Y. Davidor, H.P. Schwefel, R. Maenner (eds.) Parallel Problem Solving
from Nature - PPSN III, vol. 866, pp. 312–321. Springer Berlin Heidelberg, Berlin, Heidelberg
(1994)

8. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.: Random sampling technique for overfitting
control in genetic programming. In: A. Moraglio, S. Silva, K. Krawiec, P. Machado, C. Cotta
(eds.) European Conference on Genetic Programming

https://peerj.com/preprints/27315
https://doi.org/10.5281/zenodo.3679380
https://github.com/FergusonAJ/gptp-2019-subsampled-lexicase
https://github.com/FergusonAJ/gptp-2019-subsampled-lexicase

22 A. J. Ferguson et al.

9. Helmuth, T., McPhee, N.F., Spector, L.: Effects of lexicase and tournament selection on
diversity recovery and maintenance. In: Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, pp. 983–990. ACM (2016)

10. Helmuth, T., Pantridge, E., Spector, L.: Lexicase selection of specialists. In: Proceedings of the
Genetic and Evolutionary Computation Conference on - GECCO 2019, pp. 1030–1038. ACM
Press, Prague, Czech Republic (2019)

11. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1039–1046. ACM
(2015)

12. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase
selection. IEEE Transactions on Evolutionary Computation 19(5), 630–643 (2015)

13. Hernandez, J.G., Lalejini, A., Dolson, E., Ofria, C.: Random Subsampling Improves Perfor-
mance in Lexicase Selection. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO 2019, pp. 2028–2031. ACM, New York, NY, USA (2019).
Event-place: Prague, Czech Republic

14. Hmida, H., Hamida, S.B., Borgi, A., Rukoz, M.: Sampling Methods in Genetic Programming
Learners from Large Datasets: A Comparative Study. In: P. Angelov, Y. Manolopoulos,
L. Iliadis, A. Roy, M. Vellasco (eds.) Advances in Big Data, vol. 529, pp. 50–60. Springer
International Publishing, Cham (2017)

15. La Cava, W., Helmuth, T., Spector, L., Moore, J.H.: A Probabilistic and Multi-Objective
Analysis of Lexicase Selection and ε-Lexicase Selection. Evolutionary Computation 27, 377–
402 (2018)

16. La Cava, W., Spector, L., Danai, K.: Epsilon-Lexicase Selection for Regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016,
pp. 741–748. ACM, New York, NY, USA (2016). Event-place: Denver, Colorado, USA

17. Lalejini, A., Ofria, C.: Evolving event-driven programs with SignalGP. In: Proceedings of the
Genetic and Evolutionary Computation Conference on - GECCO 2018, pp. 1135–1142. ACM
Press, Kyoto, Japan (2018)

18. Lalejini, A., Ofria, C.: Tag-accessed memory for genetic programming. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion - GECCO 2019, pp. 346–347.
ACM Press, Prague, Czech Republic (2019)

19. Lalejini, A., Wiser, M.J., Ofria, C.: Gene duplications drive the evolution of complex traits and
regulation. In: Artificial Life Conference Proceedings 14, pp. 257–264. MIT Press (2017)

20. Martinez, Y., Naredo, E., Trujillo, L., Legrand, P., Lopez, U.: A comparison of fitness-case
sampling methods for genetic programming. Journal of Experimental & Theoretical Artificial
Intelligence 29, 1203–1224 (2017)

21. Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch Tournament Selection for Genetic Programming.
In: Proceedings of the Genetic and Evolutionary Computation Conference Companion -
GECCO 2019, pp. 994–1002. ACM Press, Prague, Czech Republic (2019)

22. Metevier, B., Saini, A.K., Spector, L.: Lexicase selection beyond genetic programming. In:
W. Banzhaf, L. Spector, L. Sheneman (eds.) Genetic Programming Theory and Practice XVI,
pp. 123–136. Springer International Publishing, Cham (2019)

23. Moore, J.M., Stanton, A.: Lexicase selection outperforms previous strategies for incremental
evolution of virtual creature controllers. In: Proceedings of the 14th European Conference on
Artificial Life ECAL 2017, pp. 290–297. MIT Press, Lyon, France (2017)

24. Moore, J.M., Stanton, A.: Tiebreaks and Diversity: Isolating Effects in Lexicase Selection. In:
The 2018 Conference on Artificial Life, pp. 590–597. MIT Press, Tokyo, Japan (2018)

25. Moore, J.M., Stanton, A.: The Limits of Lexicase Selection in an Evolutionary Robotics
Task. In: The 2019 Conference on Artificial Life, pp. 551–558. MIT Press, Newcastle, United
Kingdom (2019)

26. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2019). URL https://www.R-project.org/

https://www.R-project.org/

1 Characterizing the Effects of Random Subsampling on Lexicase Selection 23

27. Spector, L.: Assessment of problem modality by differential performance of lexicase selection
in genetic programming: a preliminary report. In: Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, pp. 401–408. ACM (2012)

28. Spector, L., Cava, W.L., Shanabrook, S., Helmuth, T., Pantridge, E.: Relaxations of Lexicase
Parent Selection. In: W. Banzhaf, R.S. Olson, W. Tozier, R. Riolo (eds.) Genetic Programming
Theory and Practice XV, pp. 105–120. Springer International Publishing, Cham (2018)

29. Spector, L., Martin, B., Harrington, K., Helmuth, T.: Tag-based modules in genetic program-
ming. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation
- GECCO 2011, p. 1419. ACM Press, Dublin, Ireland (2011)

30. Webb, C.O.: Exploring the phylogenetic structure of ecological communities: an example for
rain forest trees. The American Naturalist 156(2), 145–155 (2000)

31. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York (2016).
URL https://ggplot2.tidyverse.org

https://ggplot2.tidyverse.org

	1 Characterizing the Effects of Random Subsampling on Lexicase Selection
	1.1 Introduction
	1.2 Lexicase Selection
	1.2.1 Applying Subsampling to Lexicase Selection
	1.2.1.1 Down-Sampled Lexicase
	1.2.1.2 Cohort Lexicase

	1.3 Methods
	1.3.1 Evolutionary System
	1.3.2 Program Synthesis Problems
	1.3.3 Experimental Design
	1.3.3.1 Does Subsampling Improve Lexicase Selection's Problem-Solving Success Given a Fixed Computation Budget?
	1.3.3.2 Does Subsampling Improve Lexicase Selection's Problem-Solving Success Because it Facilitates Deeper Searches?
	1.3.3.3 Does Random Subsampling Reduce the Computational Effort Required to Solve Problems with Lexicase Selection?
	1.3.3.4 Does Subsampling Degrade Lexicase Selection's Diversity Maintenance?
	1.3.3.5 Does Subsampling Reduce Lexicase Selection's Capacity to Maintain specialists?

	1.3.4 Statistical Analyses

	1.4 Results and Discussion
	1.4.1 Subsampling Improves Lexicase Selection's Problem-Solving Success
	1.4.2 Deeper Evolutionary Searches Contribute to Subsampling's Success
	1.4.3 Subsampling Reduces Computational Effort
	1.4.4 Subsampling Does Not Systematically Decrease Phenotypic Diversity in Lexicase Selection
	1.4.5 Cohort Lexicase Enables More Phylogenetic Diversity Than Down-Sampled Lexicase
	1.4.6 Subsampling Degrades Specialist Maintenance

	1.5 Conclusion
	References

